

Virtual Entomology for Master Naturalists 3. The seven largest insect orders

Rivanna Master Naturalists 8 April 2020

Linda S. Fink Duberg Professor of Ecology Sweet Briar College

The seven largest orders

ORDER	# families worldwide	# species in North America	# species worldwide
ODONATA (dragonflies and damselflies)	29	400	> 5000
ORTHOPTERA (crickets, katydids, grasshoppers)	28	1100	> 10,000
HEMIPTERA (true bugs)	133	10,000	> 82,000
COLEOPTERA (beetles)	166	24,000	> 300,000
DIPTERA (flies)	130	17,000	> 100,000
LEPIDOPTERA (butterflies and moths)	135	11,000	> 110,000
HYMENOPTERA (bees, wasps, ants)	90	18,000	> 100,000

PALEOPTERA

EXTERNAL WING DEVELOPMENT

INTERNAL WING DEVELOPMENT

The seven largest orders

ORDER	# families worldwide	# species in North America	# species worldwide
ODONATA (dragonflies and damselflies)	29	400	> 5000
ORTHOPTERA (crickets, katydids, grasshoppers)	28	1100	> 10,000
HEMIPTERA (true bugs)	133	10,000	> 82,000
COLEOPTERA (beetles)	166	24,000	> 300,000
DIPTERA (flies)	130	17,000	> 100,000
LEPIDOPTERA (butterflies and moths)	135	11,000	> 110,000
HYMENOPTERA (bees, wasps, ants)	90	18,000	> 100,000

Suborder: Anisoptera (dragonflies)

Suborder: Zygoptera (damselflies)

Can't fold wings External wing development Aquatic immatures Aerial adults Predators at all stages

Aquatic immatures take in oxygen via

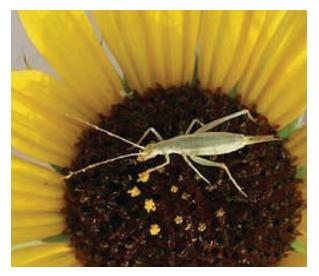
Internal rectal gills (dragonflies)

External posterior gills (damselflies)

Reproduction

secondary sexual organs (male)'wheel position' & tandem flightsperm competition: sperm removal, mate guarding

The seven largest orders


ORDER	# families worldwide	# species in North America	# species worldwide
ODONATA (dragonflies and damselflies)	29	400	> 5000
ORTHOPTERA (crickets, katydids, grasshoppers)	28	1100	> 10,000
HEMIPTERA (true bugs)	133	10,000	> 82,000
COLEOPTERA (beetles)	166	24,000	> 300,000
DIPTERA (flies)	130	17,000	> 100,000
LEPIDOPTERA (butterflies and moths)	135	11,000	> 110,000
HYMENOPTERA (bees, wasps, ants)	90	18,000	> 100,000

Orthoptera: grasshoppers, katydids, crickets

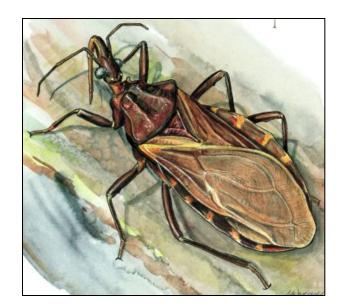
Related orthopteroid orders

ORTHOPTEROID orders

- CHEWING MOUTHPARTS
- external wing development
- anal cerci
- long, multisegmented antennae

The seven largest orders

ORDER	# families worldwide	# species in North America	# species worldwide
ODONATA (dragonflies and damselflies)	29	400	> 5000
ORTHOPTERA (crickets, katydids, grasshoppers)	28	1100	> 10,000
HEMIPTERA (true bugs)	133	10,000	> 82,000
COLEOPTERA (beetles)	166	24,000	> 300,000
DIPTERA (flies)	130	17,000	> 100,000
LEPIDOPTERA (butterflies and moths)	135	11,000	> 110,000
HYMENOPTERA (bees, wasps, ants)	90	18,000	> 100,000


HEMIPTEROID Orders

@ 1993 Smithsonian Institutio

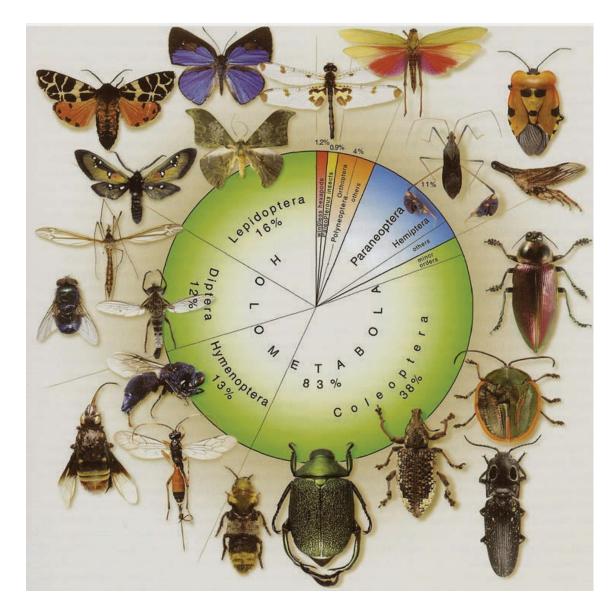
- SUCKING MOUTHPARTS
- external wing development
- no anal cerci

SUCKING MOUTHPARTS

Spittlebugs

Aphids

Aphids



The seven largest orders

ORDER	# families worldwide	# species in North America	# species worldwide
ODONATA (dragonflies and damselflies)	29	400	> 5000
ORTHOPTERA (crickets, katydids, grasshoppers)	28	1100	> 10,000
HEMIPTERA (true bugs)	133	10,000	> 82,000
COLEOPTERA (beetles)	166	24,000	> 300,000
DIPTERA (flies)	130	17,000	> 100,000
LEPIDOPTERA (butterflies and moths)	135	11,000	> 110,000
HYMENOPTERA (bees, wasps, ants)	90	18,000	> 100,000

INTERNAL WING DEVELOPMENT

COLEOPTERA: Beetles

COLEOPTERA: characteristics

Adults **live in concealed, tight spaces**, but maintain ability to fly:

Forewings modified into elytra

- heavily sclerotized: protection
 edges meet in tongue-and-groove
 contribute little to flight

 reduction in thoracic muscles
 - •reduction in mesothorax

•Hindwings fold lengthwise and crosswise and are tucked under elytra

COLEOPTERA: other characteristics

Larvae and adults:

- Chewing / biting mouthparts
- Varied diets

Larvae:

- Varied in form
- Usually hidden and usually generalized
- Little variation in coloration

Beneficial beetle predators

Ladybird beetles (Coccinellidae, Coleoptera) vs. aphids

Scarabaeoidea

Adaptations for burrowing

Large forecoxae and tibiae Adult **antennae clubbed or lamellate**

Major family

Scarabaeidae: scarab

heavy bodies

larvae C-shaped, with obvious legs

"chafers": agricultural pests (Japanese beetle) dung beetles goliath, hercules beetles

Japanese beetle

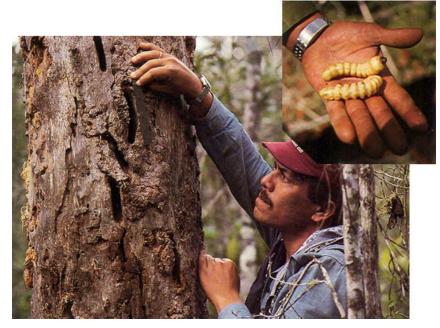
Elateriformia

Heterogeneous group Larvae longer-lived than adults Some adults aposematic and unpalatable

Larval ecology varied: include ectoparasites, aquatic, predaceous, detritivores

Major families Elateridae: click Lycidae: net-winged Lampyridae: fireflies Cantharidae: soldier Buprestidae: jewel

Phytophaga: Cerambycidae


Long-Horned Beetles

elongate, cylindrical, long antennae eyes usually notched often brightly colored

most adults feed on flowers most larvae are wood-boring

some are major tree pests

Phytophaga: Chrysomelidae

Leaf Beetles

closely related to the Cerambycidae shorter antennae Smaller (usu. <12 mm), rounder

Adults feed on flowers and foliage Many are brightly colored Larvae are phytophagous free feeders on foliage leaf miners stem borers seeds roots Many are significant pests of cultivated plants

Colorado potato beetle

spotted cucumber beetle

locust leafminer

Phytophaga: Curculionoidea

Weevils or snout beetles

Head prolonged forward into snout Mouthparts small, mandibles at tip of snout

Plant feeders Most larvae burrow into twigs, nuts Larvae C-shaped, legless (vermiform)

Many major agricultural and forest pests

Major families Curculionidae: true weevils Brentidae: straight-snouted weevils

DIPTERA: True aeronauts

Hind wings modified into halteres

- **flight stabilizers**, help insect fly straight
- Assisted by sensory systems
 - **sensory structures** on halteres detect distortions during flight
 - **visual system** sends signals from brain to haltere muscles, which send signals to wing muscles

DIPTERA: True aeronauts

Agile flight (ex: hovering, landing upside down, flying backwards, rapid wing beats)

Mobile head, large compound eyes

Liquid feeders with haustellate mouthparts (biting/sucking or licking/sponging)

Larvae legless, wormlike

Ecological and economic importance

- pollination
- biological control (predators, parasitoids)
- decomposition
- plant pests

ex: apple maggot, Hessian fly (wheat)

disease vectors

ex: malaria, yellow fever, leishmaniasis, west nile virus

Order Diptera

Suborder Nematocera ("long horned")

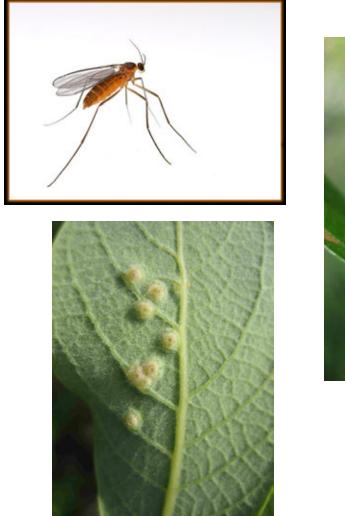
ex: mosquitoes long-legged, fragile-looking long antennae

Suborder Brachycera

("short horned")

ex: housefly short-legged short antennae stockier body

Nematocera: **Tipulidae** (crane flies)



large fly family (>1500 sp NA)
larvae aquatic or semi-aquatic
adults short-lived, do not bite
common and abundant

Nematocera: Cecidomyiidae (gall midges)

- 1-5mm
- most species make plant galls
- economically-important agricultural pests

Brachycera: **Tabanidae** (horse fly, deer fly)

common size medium to large large **eyes** often bright colors, **iridescent females**

suck blood livestock and human pests eyes separated

males

eat pollen and nectar found at flowers eyes touch

Brachycera: Tachinidae (tachinid flies)

Important parasitoids

- •Diverse insect hosts Lepidoptera, Coleoptera, Orthoptera, Hemiptera, Hymenoptera, Diptera
- •Attack in many ways. Female may:
 - lay eggs on host
 - •insert eggs into host
 - deposit eggs on plants, eggs eaten by host
 - •produce hatching eggs, larvae burrow into host

What is a parasitoid?

An insect whose immature stages develop within, or attached to the outside of, a single insect host, and ultimately kill the host

Laying eggs in a caterpillar

Adults emerging out of butterfly eggs

Parasitized beetle larva

Brachycera: Syrphidae (flower flies, hover flies)

diverse, abundant flies

adults common at flowers bee and wasp mimics

larvae

ecologically diverse, include:
predators on aphids
in social insect nests
in polluted water
in rotting wood



Eristalis, rat-tailed maggot

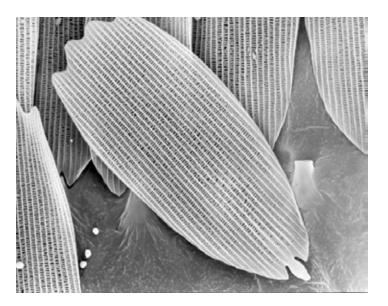
LEPIDOPTERA: Butterflies and moths

Lepidoptera adults

Adults

- wing scales are flattened setae with complex microstructure
- proboscis





Lepidoptera wing scales

Lepidoptera larvae and pupae

Larvae

- muscular prolegs on abdomen
- crochets on prolegs

Pupae

obtect (appendages fused to body)

Lepidoptera larvae



Caterpillars use silk from labial glands

USES: ballooning and droplines; shelters, leaf roll;, webs and tents; girdles, buttons and cocoons

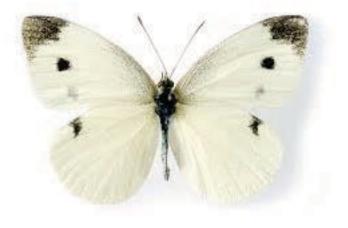
Lepidoptera and plants

Largest lineage of plant-feeding animals

The evolution of the Lepidoptera is linked with the evolution of flowering plants (angiosperms)

Many Lepidoptera have specific hostplant associations

Milkweed Butterflies



Subfamily Danainae Family Nymphalidae

Hostplants: milkweeds (Asclepiadaceae) and dogbanes (Apocynaceae)

Pieridae ("Whites" and "Sulfurs")

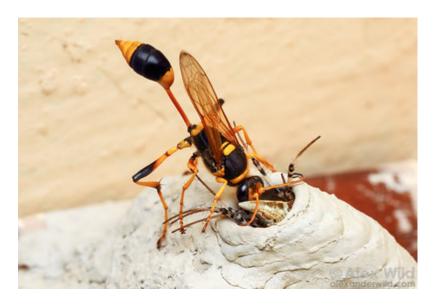
subf. Pierinae ("whites")
hostplants: mustard family
(ex: cabbage white butterfly)

subf. Coliadinae ("sulfurs") hostplants: legumes

Hymenoptera: Bees, wasps, ants

Hymenoptera: Bees, wasps, ants

- Membranous wings
 - not many veins
 - hind wings small
- Chewing mouthparts
- Ovipositor well developed
- Most have a "wasp waist"



Bees, wasps, ants: why have a "wasp waist"?

constriction = petiole

Why have a wasp waist? Maneuverability.

Bees, wasps, ants: diversity of diet

Nectar and pollen feeders

Predators

Parasitoids

Gall formers

PARASITOID EXAMPLE: Braconidae

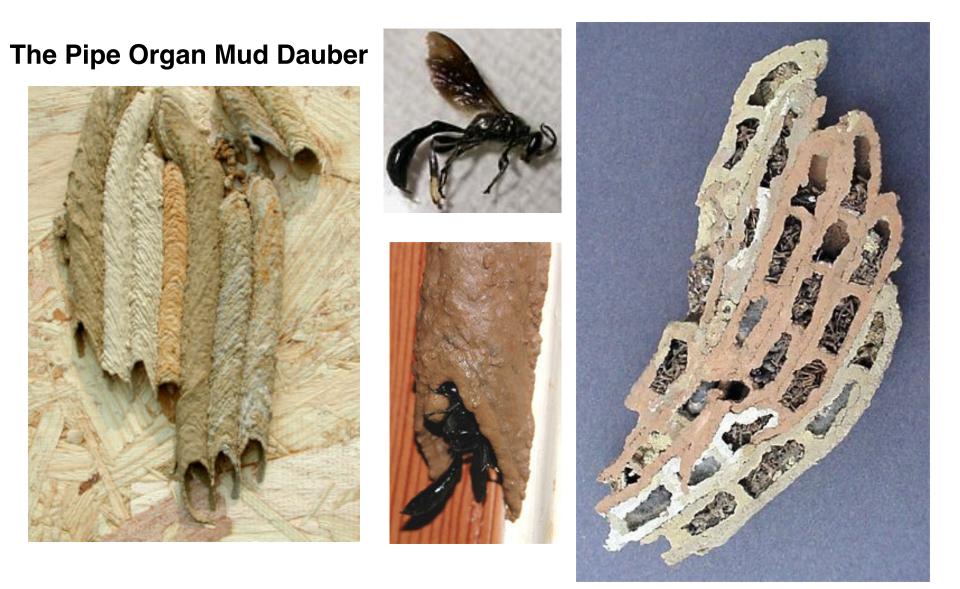
- Hosts: Lepidoptera
- Diversity: ~2000 spp N.A.
- Endoparasites and ectoparasites
- Solitary and gregarious
- Stages attacked: any

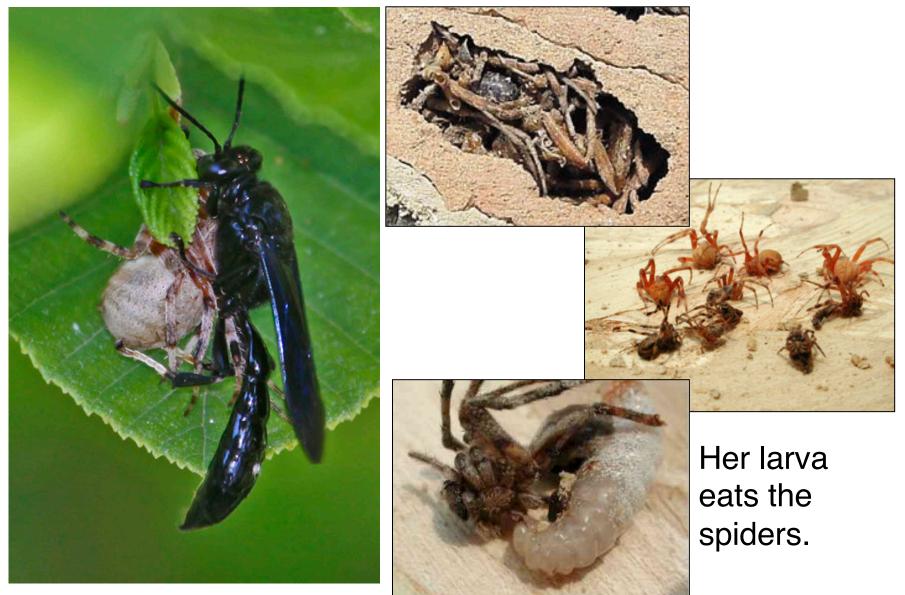
Gall formers

An insect that stimulates a plant into producing a home within which the insect can feed and develop.

Many hymenoptera

- protect young in nests
- supply young with food

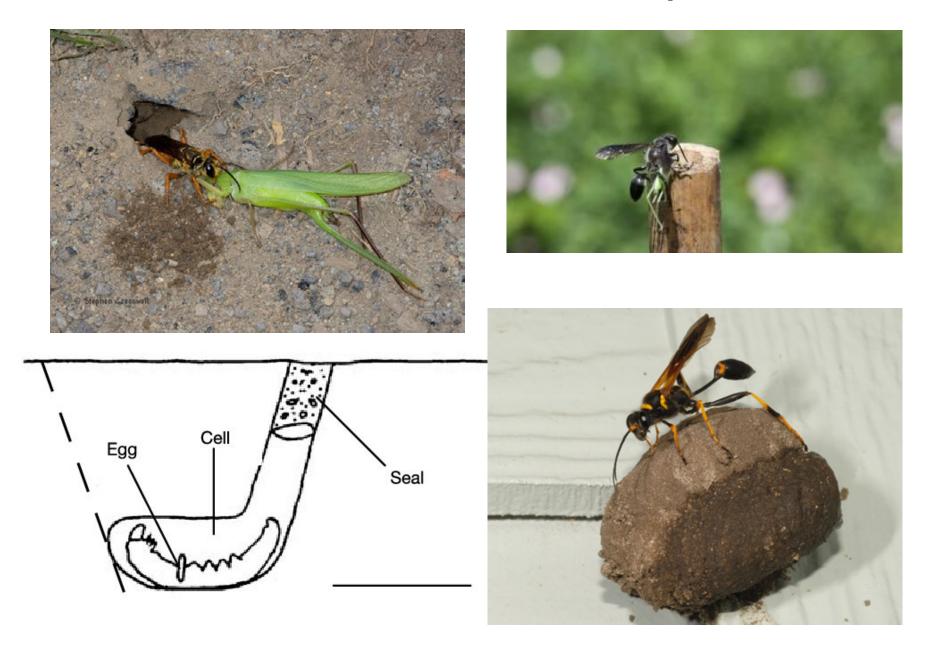




Example: Sphecid wasps

The female catches spiders, paralyzes them, puts them in a cell, and lays an egg.

Other sphecid wasps capture other prey



and make their nests in different places

Many bees and wasps, and all ants, are highly social ("eusocial")

- They live together in a colony
- They have a division of labor
 - different groups (castes) have different jobs
 - many workers never reproduce (sterile)
- They cooperate in caring for offspring

Example of a eusocial insect: The Honey Bee

European Honey Bees, Apis mellifera

Characteristics of honey bee colonies

Nest

wax comb in an enclosed, protected space (hollow tree, wooden hive)

nectar and pollen

Honey bee castes

Workers

- unmated females
- do everything for the colony
- > 10,000

Queen

- mated female
- lays eggs (up to 200,000 per year)
 - fertilized = females
 - unfertilized = males
- controls colony with chemical communication
- 1 per colony

Drones

- males
- do zero work in the colony
- fly out looking for virgin queens
- if lucky, mate once and die
- if unlucky, never mate and die
- 100's to 1000's, ~15% of colony

© Alex Wild alexanderwild.com

Honey Bees, *Apis mellifera*

What were our goals for Insect Day?

Understand

- 1. features that characterize arthropods in general, insects specifically
- 2. how much variation there is in all aspects of insect biology
- 3. ecological importance of insects

Feel prepared to

4. participate in insect projects as Master Naturalists

- children's and school programs
- pollinator and foodplant gardening
- monitor native insect populations, stream health, exotic insects
- measure biodiversity (e.g. bioblitz, NABA butterfly count)
- citizen science (e.g. Journey North, Monarch Watch)
- 5. learn more about insects

What is interesting to observe?

- Diversity
- Phenology
- Interactions
- Invasive species
- Population dynamics
- Community ecology

Who pollinates your herbs?

What is interesting to observe?

- Diversity
- Phenology
- Interactions
- Invasive species
- Population dynamics
- Community ecology

When do swallowtail butterflies appear?

What is interesting to observe?

- Diversity
- Phenology
- Interactions
- Invasive species
- Population dynamics
- Community ecology

What are brown marmorated stink bugs feeding on?

What is interesting to observe?

- Diversity
- Phenology
- Interactions
- Invasive species
- Population dynamics
- Community ecology

Which insects are scarce this year? common? early? late? missing?

There is always more to discover

There is always more to discover

Here are some things I've learned this year

- Aphids and their relatives host a lot of symbiotic bacteria and we don't know what most of them do.
- Emerald ash borers are ruthless.
- New molecular tools are going to make it possible to eliminate the mosquitoes that transmit malaria.
- Virgin honey bees travel miles to drone aggregation sites. Some of these sites have been in use for more than 50 years.

There is always more to discover

Let me know about your discoveries!